
Combining Model Checking and
Symbolic Execution for Software Testing

Corina Păsăreanu
Carnegie Mellon Silicon Valley, NASA Ames

 errors are expensive …
 annual cost of software errors to US economy is $ ~60B [NIST’02]

software is
everywhere

main approaches to finding errors

•  model checking
–  automatic, exhaustive
–  scalability issues; reported errors may be spurious

•  static analysis
–  automatic, scalable, exhaustive
–  reported errors may be spurious

•  testing
–  reported errors are real
–  may miss errors
–  well accepted technique; state of practice

our approach

combine model checking and symbolic execution
for test case generation

Model Checking vs Testing

OK
testing / simulation

error

OK

test oracle

model checking

error trace
Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

always(ϕ orψ)

property

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

Java PathFinder (JPF)

•  Extensible virtual machine framework for Java bytecode verification:
•  Workbench to implement all kinds of verification tools
•  Typical use cases:

–  software model checking (detection of deadlocks, races, assert errors)
–  test case generation (symbolic execution)
–  ... and many more

Java PathFinder (JPF)

•  JPF uses scalability enhancing mechanisms
–  on-the-fly partial order reduction
–  configurable search strategies
–  user definable heuristics, choice generators

•  Recipient of several awards
–  NASA 2003, IBM 2007, FLC 2009

•  Open sourced:
http://babelfish.arc.nasa.gov/trac/jpf

•  Largest application:
–  Fujitsu (one million lines of code)

Symbolic PathFinder (SPF)

•  Combines symbolic execution, model checking and constraint solving
•  Applies to executable models and code
•  Handles dynamic data structures, loops, recursion, multi-threading;

arrays and strings
•  Java PathFinder extension project
 [TACAS’03, ISSTA’08, ASE’10]

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving

Java
bytecode

Symbolic PathFinder (SPF)

Users:
•  Academia (uiuc.edu, unl.edu, utexas.edu, byu.edu, umn.edu,

Stellenbosch Za, Waterloo Ca, Charles University Prague Cz, …)
•  Industry (Fujitsu)
•  NASA (Ames, Langley)

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving

Java
bytecode

 if ((pres < pres_min) || 	

 (pres > pres_max)) {	

	
…	

 } else {	

 …	

 }	

 if ((pres < pres_min)) || 	

 (pres > pres_max)) {	

	
…	

 } else {	

 …	

 }	

 if ((pres < pres_min) || 	

 (pres > pres_max)) {	

	
…	

 } else {	

 …	

 }	

Symbolic Execution
Systematic Path Exploration

Generation and Solving of Numeric Constraints

 if((pres < pres_min) || (pres > pres_max)) {	

	
…	

 } else {	

 …	

 }	

[pres = 460; pres_min = 640; pres_max = 960]	

[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]	

[PC1: Sym1< MIN]	
 [PC2: Sym1 > MAX]	

[PC3: Sym1 >= MIN && 	

Sym1 <= MAX 	

Solve path conditions PC1, PC2, PC3 → test inputs

Symbolic Execution
 •  King [Comm. ACM 1976], Clarke [IEEE TSE 1976]

•  Analysis of programs with unspecified inputs
–  Execute a program on symbolic inputs

•  Symbolic states represent sets of concrete states
•  For each path, build path condition

–  Condition on inputs – for the execution to follow that path
–  Check path condition satisfiability – explore only feasible paths

•  Symbolic state
–  Symbolic values/expressions for variables
–  Path condition
–  Program counter

Symbolic Execution
 Received renewed interest in recent years

… due to
•  Algorithmic advances
•  Increased availability of computational power and decision

procedures
Applications:
•  Test-case generation, error detection, …
Tools, many open-source
•  UIUC: CUTE, jCUTE, Stanford: EXE, KLEE, UC Berkeley: CREST,

BitBlaze
•  Microsoft’s Pex, SAGE, YOGI, PREfix
•  NASA’s Symbolic (Java) Pathfinder
•  IBM’s Apollo, Parasoft’s testing tools etc.

x = 1, y = 0	

1 > 0 ? true	

x = 1 + 0 = 1	

y = 1 – 0 = 1	

x = 1 – 1 = 0	

0 > 1 ? false	

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

Concrete Execution Path	
Code that swaps 2 integers	

Example – Standard Execution

Example – Symbolic Execution

[PC:true]x = X,y = Y	

[PC:true] X > Y ?	

[PC:X>Y]y = X+Y–Y = X	

[PC:X>Y]x = X+Y–X = Y	

[PC:X>Y]Y>X ?	

int x, y;	

if (x > y) {	

 x = x + y;	

 y = x – y;	

 x = x – y;	

 if (x > y)	

 assert false;	

}	

Code that swaps 2 integers	
 Symbolic Execution Tree	

[PC:X≤Y]END	
 [PC:X>Y]x= X+Y	

false	
 true	

[PC:X>Y∧Y≤X]END	
 [PC:X>Y∧Y>X]END	

false	
 true	

path condition	

False!	

Solve PCs: obtain test inputs

Java PathFinder (JPF) used for systematic exploration
•  symbolic execution tree
•  different heap configurations

–  lazy initialization for input data structures [TACAS’03]
–  non-determinism handles aliasing in input data structures

•  multi-threading
•  property checking
•  backtracking – when PC un-satisfiable
•  different search strategies (depth-first, breadth-first)

Take advantage of JPF’s optimizations!

Symbolic PathFinder (SPF)

Combining Symbolic Execution with Model Checking

•  No state matching performed
–  Some abstract state matching

•  Symbolic search space may be infinite due to loops, recursion
–  We put a limit on the search depth

Symbolic PathFinder (SPF)

Combining Symbolic Execution with Model Checking

Implementation

•  Non-standard interpreter of byte-codes
–  Replaces concrete execution semantics of byte-codes with

symbolic execution
–  Enables JPF-core to perform systematic symbolic analysis

•  Attributes
–  Symbolic information stored in attributes associated with the

program data
–  Propagated dynamically during symbolic execution

Implementation

•  Choice generators
–  handle non-deterministic choices in branching conditions

•  Listeners
–  collect and print results: path conditions, test vectors or test

sequences
–  influence the search

•  Native peers
–  model native libraries
–  e.g. capture Math library calls and send them to the

constraint solver

•  Mixed concrete-symbolic solving

Example: IADD

public class IADD extends
Instruction { …

 public Instruction execute(…
ThreadInfo th){

 int v1 = th.pop();
 int v2 = th.pop();
 th.push(v1+v2,…);
 return getNext(th);

 }
}

public class IADD extends
 ….bytecode.IADD { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v1 = ….getOperandAttr(0);
 Expression sym_v2 = ….getOperandAttr(1);
 if (sym_v1 == null && sym_v2 == null)
 // both values are concrete
 return super.execute(… th);
 else {

 int v1 = th.pop();
 int v2 = th.pop();
 th.push(0,…); // don’t care
 …
 ….setOperandAttr(Expression._plus(
 sym_v1,sym_v2));
 return getNext(th);

 }
 }
}

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code:

Example: IFGE
public class IFGE extends

Instruction { …
 public Instruction execute(…

ThreadInfo th){
 cond = (th.pop() >=0);
 if (cond)

 next = getTarget();
 else

 next = getNext(th);
 return next;

 }
}

public class IFGE extends
 ….bytecode.IFGE { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v = ….getOperandAttr();
 if (sym_v == null)
 // the condition is concrete
 return super.execute(… th);
 else {

 PCChoiceGen cg = new PCChoiceGen(2);…
 cond = cg.getNextChoice()==0?false:true;
 if (cond) {

 pc._add_GE(sym_v,0);
 next = getTarget();
 }
 else {
 pc._add_LT(sym_v,0);
 next = getNext(th);
 }
 if (!pc.satisfiable()) … // JPF backtrack
 else cg.setPC(pc);
 return next;
 } } }

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code:

Decision Procedures

•  Choco, Coral, Yices, CVC3, Hampi,
IASolver …

•  Generic interface – easy to extend with
new constraint solvers and decision
procedures

Mathematical functions

Model-level interpretation

Math.sin $x + 1 sin($x + 1)

Symbolic expression
w/ un-interpreted function handled

directly by solver (Choco)

•  Used to be a challenge
•  Lazy initialization [TACAS’03, SPIN’05]
•  Non-determinism handles aliasing

–  JPF explores different heap configurations explicitly
•  Implementation:

–  GETFIELD, GETSTATIC bytecode instructions modified
–  listener prints input heap constraints and method effects

(outputs)

Input Data Structures

Example
class Node {

int elem;
Node next;

Node swapNode() {
 if (next != null)
 if (elem > next.elem) {
 Node t = next;
 next = t.next;
 t.next = this;
 return t;
 }
 return this;
}

}

? null

E0 E1

E0

E0 E1 null

E0 E1 ?

E0 E1

E0 E1

Input list + Constraint Output list

E0 > E1

none

E0 <= E1

none

E0 > E1

E0 > E1

E0 > E1

E1 E0 ?

E1 E0

E1 E0

E1 E0 null

E0 E1

E0

? null

NullPointerException

Lazy Initialization

E0
next

E1
next

t
null

t
E0

next
E1

next
?

next
E0

next
E1

t next E0 next E1

next

t

E0
next

E1
next

t

consider executing
next = t.next;

E0 E1
next

t
null

next

t
E0 E1

next
?

next
next

Applications

•  NASA control software [ISSTA’08]
–  Manual testing: time consuming (~1 week)
–  Guided random testing could not obtain full coverage
–  SPF generated ~200 tests to obtain full coverage in <1min
–  Found major bug in new version

•  Polyglot [ISSTA’11, NFM’12]
–  Analysis and test case generation for UML, Stateflow and Rhapsody

models
–  Pluggable semantics for different statechart formalisms
–  Analyzed MER Arbiter, Ares-Orion communication

•  Tactical Separation Assisted Flight Environment (T-SAFE)
[NFM’11, ICST’12]

–  Integration with CORAL for solving complex mathematical constraints
•  Test case generation for Android apps
•  …

Orion orbits the moon
(Image Credit: Lockheed Martin).

Test Sequence Generation

Java component
(Binary Search Tree,

UI)

add(e)

remove(e)

find(e)

Interface

Generated test sequence:
BinTree t = new BinTree();
 t.add(1);
 t.add(2);
 t.remove(1);

•  SymbolicSequenceListener generates JUnit tests:
–  method sequences (up to user-specified depth)
–  method parameters

•  JUnit tests can be run directly by the developers
•  Measure coverage
•  Support for abstract state matching
•  Extract specifications

Testing the Onboard Abort Executive (OAE)
Prototype for CEV ascent abort handling being developed by JSC GN&C

Inputs

Pick Highest Ranked Abort

Checks Flight Rules
to see if an abort must occur

Select Feasible Aborts

OAE Structure Results

Baseline
–  Manual testing: time consuming (~1 week)
–  Guided random testing could not cover all aborts
Symbolic PathFinder
–  Generates tests to cover all aborts and flight rules
–  Total execution time is < 1 min
–  Test cases: 151 (some combinations infeasible)
–  Errors: 1 (flight rules broken but no abort picked)
–  Found major bug in new version of OAE
–  Flight Rules: 27 / 27 covered
–  Aborts: 7 / 7 covered
–  Size of input data: 27 values per test case

[ISSTA’08]

Generated Test Cases and Constraints

Test cases:
// Covers Rule: FR A_2_A_2_B_1: Low Pressure Oxodizer Turbopump speed limit exceeded
// Output: Abort:IBB
CaseNum 1;
CaseLine in.stage_speed=3621.0;
CaseTime 57.0-102.0;

// Covers Rule: FR A_2_A_2_A: Fuel injector pressure limit exceeded
// Output: Abort:IBB
CaseNum 3;
CaseLine in.stage_pres=4301.0;
CaseTime 57.0-102.0;
…

Constraints:
 //Rule: FR A_2_A_1_A: stage1 engine chamber pressure limit exceeded Abort:IA

PC (~60 constraints):
in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 &&
in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && …

Polyglot
•  Large programs such as NASA Exploration

–  Multiple systems that interact via safety-critical protocols
–  Designed with different Statechart variants
–  A unified verification framework needed

•  Polyglot
–  Modeling and analysis for multiple Statechart formalisms
–  Captures interactions between components
–  Formal semantics that captures the variants of Statecharts
–  Applied to JPL’s MER arbiter, Ares-Orion communication

Collaboration w/ Vanderbilt University and University of Minnesota

[ISSTA’11,NFM’12]

Rhapsody

IMPORT

Simulink/Stateflow

Pluggable Semantics

Generic Execution Environment

UML Rhapsody

State machine model in Java

EXPORT

Symbolic PathFinder

Stateflow

Data interface

Modeling /
Intermediate Representation

Error Report

Systematic
Analysis

Sym Exe Tree

Test
Sequences

Constraint
Solving

Polyglot

32

Test Generation for TTEthernet Protocol

•  Fault tolerant version of Ethernet protocol
•  Used by NASA in space networks
•  Assure reliable network communications.

•  Developed PVS model of basic version of the
TTEthernet protocol

•  Framework for translating models into Java
multi-threaded code

SPF analysis
•  filtering of test cases to satisfy the various fault

hypothesis
•  verification of fault-tolerant properties
•  demonstrated test case generation for

TTEthernet’s Single Fault Hypothesis

[w/ NASA Langley]

Shown: Minimal configuration for testing
agreement in TTEthernet

Differential Symbolic Execution – NASA Langley
37

Vj

source

diff Vi Vj

common

Extended
Symbolic
Execution

Pre-computed
Summaries

Extended
Symbolic
Execution

Vi

Symbolic
Summary

Vj

Symbolic
Summary

DSE Step 1 DSE Step 2

Check
Equivalence

Generate
Deltas

Vi Vj

DSE Step 3

Vi Vj

Client
Analyses

Vi

source

Impact Analysis
Test Suite Evolution
Refactoring Assurance
Change Characterization
Selective Re-certification
...

Figure 3.1: DSE Methodology

3.1 Methodology

The DSE methodology performs an automated form of differential program anal-

ysis [53, 79]. It combines advances in symbolic execution [1, 29, 58, 75, 76] with

over-approximating abstract summaries of unchanged sections of code, to detect pro-

gram differences and precisely characterize the execution behaviors of one program

version relative to another. Informally, a program’s execution behavior refers to an

execution path and is represented by pairing a description of input values with the

effects of execution, i.e., the values computed for a given set of inputs. DSE is capable

of (a) demonstrating that two program versions are equivalent, or, if they are not,

(b) characterizing the behavioral differences between versions by identifying the sets

of inputs that cause a different effect.

The DSE methodology is performed in three main steps as illustrated in Figure 3.1.

Given two versions of a program, Vi and Vj, DSE first uses a light-weight static

analysis technique, e.g., source file or AST diff, to identify common code sequences,

i.e., sections of code which are unchanged between program versions. The goal of

this step is to reduce analysis cost by inferring common program behaviors using

�  Computes logical difference between two program versions
�  [FSE’08, Person et al PLDI’11]

challenges

handling complex mathematical constraints

sqrt(pow(((x1 + (e1 * (cos(x4) – cos((x4 + (((1.0 * (((c1 * x5) * (e2/c2))/x6)) * x2)/
e1)))))) – (((e2/c2)) * (1.0 – cos((c1 * x5))))),2.0)) > 999.0 & (c1 * x5) > 0.0 &
x3 > 0.0 & x6 > 0.0 & c1 = 0.017… &
c2 = 68443.0 & e1 = ((pow(x2,2.0)/tan((c1*x3)))/c2) &
e2 = pow(x6,2.0)/tan(c1*x3)

Example constraint generated for a module from TSAFE
(Tactical Separation Assisted Flight Environment)

Coral Solver

•  Target application of solver: programs that
–  Use floating-point arithmetic
–  Call math functions

{x1=100.0, x2=98.48…, x3=3.08…E-11, …}

TSAFE example

Input: sqrt(pow(((x1 + (e1 * (cos(x4) – …
Output:

Approach: combine meta-heuristic search and
interval solving [NFM’11, ICST’12]

Coral

http://pan.cin.ufpe.br/coral

path explosion

parallel symbolic execution [ISSTA’10]
symbolic execution very amenable to parallelization

no sharing between sub-trees

Balancing partitions

Nicely Balanced – linear speedup Poorly Balanced – no speedup

�  Solutions
�  Simple static partitioning [ISSTA’10]
�  Dynamic partitioning [Andrew King’s Masters Thesis at KSU,

Cloud9 at EPFL, Fujitsu]

Simple Static Partitioning
�  Static partitioning of tree with light dynamic load balancing

�  Flexible, little communication overhead

�  Constraint-based partitioning
�  Constraints used as initial pre-conditions
�  Constraints are disjoint and complete

�  Approach
�  Shallow symbolic execution => produces large number of constraints
�  Constraints selection – according to frequency of variables
�  Combinatorial partition creation

�  Intuition
�  Commonly used variables likely to partition state space in useful ways

�  Close to linear speed-up when using 128 workers

Distributed symbolic execution over cloud
•  Adaptive dynamic partitioning
•  Heuristics to partition jobs on the fly based on system resources and job

characteristics and history
•  Close to linear speed-up is possible in > 90% of the cases

Fujitsu applications

Scheduler
Node

Worker Nodes

N1 N2 N3 N4

Job Queue	

J1	 J2	 J3	 J4	 J5	

status	jobs	

Available Resource List	

N3 N4

Ini$aliza$on	
Path	 Condi$on	

New	 Jobs	

Computa$on	
at	 this	 node	

Termina$on	
Path	
Condi$on	

thanks Fujitsu

Testing web applications – challenge
•  Handling complex constraints involving strings and numerics
•  e.g.: string s, q; integer a, b;

s.equals(q) && s.startswith(“uvw”) && q.endswith(“xyz”) && s.length()
<a && (a+b)<6 && b>0 Unsatisfiable !

Solution – string solver
•  Maintain separate constraint set for Integer/Boolean and Real –

represented as equations
•  Maintain separate constraint set for string variables – represented as

FSMs or regular expressions
•  Pass learned constraints from one domain to another and iterate to

fixed point or time out

Fujitsu applications

Fujitsu technology handles symbolic execution and test case generation
for web applications which uses String input variables extensively

thanks Fujitsu

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

S0, S1, S3, S4 =
statements we wish to cover

hash is native or can not be
handled by decision procedure

handling native code

hash is native or can not be
handled by decision procedure

S0, S1, S3, S4 =
statements we wish to cover

Symbolic Execution
Can not handle it!

Solution:
Mixed concrete-symbolic
solving [ISSTA’11]

handling native code

void test(int x, int y) {
 if (x > 0) {
 if (y == hash(x))
 S0;
 else
 S1;
 if (x > 3 && y > 10)
 S3;
 else
 S4;
 }
}

Mixed Concrete-Symbolic Solving

�  Use un-interpreted functions for external library calls

�  Split path condition PC into:
�  simplePC – solvable constraints
�  complexPC – non-linear constraints with un-interpreted

functions

�  Solve simplePC
�  Use obtained solutions to simplify complexPC

�  Check the result again for satisfiability

Mixed Concrete-Symbolic Solving

 Assume hash(x) = 10 *x:
PC: X>3 ∧	 Y>10 ∧	 Y=hash(X)

 simplePC complexPC

Solve simplePC
Use solution X=4 to compute h(4)=40
Simplify complexPC: Y=40
Solve again:

 simplified PC: X>3 ∧ Y>10 ∧	 Y=40 Satisfiable!

example

EXE results: stmt “S3” not covered DART results: path “S0;S4” not covered

Mixed concrete-symbolic solving: all paths covered Example

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

Predicted path “S0;S4”
!= path taken “S1;S4”

//hash(x)=10*x

Mixed Concrete-Symbolic Solving vs DART

�  DART = Directed Automated Random Testing
�  Collects symbolic constraints during concrete executions

�  Both techniques incomplete

�  Incomparable in power (see paper)

�  Mixed concrete-symbolic solving can handle only “pure”,
side-effect free functions
�  DART does not have the limitation; will likely diverge

Symbolic PathFinder

Available from JPF distribution:
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

Combining Symbolic Execution with Model Checking

Related Approaches
•  Korat: black box test generation [Boyapati et al. ISSTA’02]
•  Concolic execution [Godefroid et al. PLDI’05, Sen et al. ESEC/

FSE’05]
–  DART/CUTE/jCUTE/…

•  Concrete model checking with abstract matching and refinement
[CAV’05]

•  Symstra [Xie et al. TACAS’05]
•  Execution Generated Test Cases [Cadar & Engler SPIN’05]
•  Testing, abstraction, theorem proving: better together! [Yorsh et al.

ISSTA’06]
•  SYNERGY: a new algorithm for property checking [Gulavi et al.

FSE’06]
•  Feedback directed random testing [Pacheco et al. ICSE’07]
•  …

Current and Future Work
•  Symbolic execution for program specialization
•  Thread-modular reasoning
•  Memoization across multiple SPF runs [ISSTA’12]
•  Testing for Android applications
•  Reliability analysis – compute probability of reaching a

fault state
•  Invariant generation [SPIN’04]
•  Program and test repair

Thank you!

